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Welcome reader,

to the third edition of our newsletter, and the first
instance of one beginning with an editorial.

In a nut ‘graph, our newsletter is envisioned

as an outlet for science communication from

the department’s various representatives and
stakeholders. Being one among the umpteen
student undertakings in the institute, the underlying
value of a department newsletter being a manifesto
point often ends up overshadowing its conceptual
worth, but you’ll find undeniably honest and
informative pieces contained within. Every year
we reach out to students, alumni, and faculty to
pen down a few paragraphs that have the thread of
physics and the department running through them;
this year’s yield is packaged herein.

This edition marks the Diamond Jubilee of the
institute, and that of the department too, since ours
was one of the only two science departments set
up when IIT Bombay had just begun its material
existence. The trajectory of this department has
been predictably chaotic, with the exception of
year 2018 when the anti-infi-corridor gate of the
department became operational—none of us saw
that coming. There’s nobody better to explore this
journey with than a budding Condensed Matter
Physicist; head over to Arkya’s article to know
more about how the department evolved out of
the Y2K bug, and the tumbling dominoes that led
to the current 1:1 ratio of experimentalists versus
theorists among the faculty.

Incidentally, I happened to interact with the
Bangalore science community over this summer,
and found out to my amazement that a course
named Engineering Physics still results in puzzled
looks and my explanation (“three years of B.Sc.
Physics with a bit of Electronics sprinkled in”)
doesn’t help much. I had no more than a fuzzy idea
of this branch when I started, and as it turns out,

so did every other student of the course. Relatively
fresh alumni Sandesh and Ayush, a graduate
student and a financial analyst, respectively, discuss
how they dealt with this uncertainty in their own
ways. Their quest to find answers brings them

to pen hauntingly nostalgic notes on how the
department becomes a home for so many students
stepping away from parental love and protection
for the sake of their love of physics.

While Sandesh and Ayush maneuver the difficulties
in defining an education in physics, Viraj, on the
other hand, grapples with defining an orientation

to research in physics. In “Width or Depth?”,

Viraj weighs narrowing down on a topic versus
venturing forth into the broad horizons; he
delineates how his current research interest is a mix
of happy accidents, and ends on a reassuring note
to the current undergrads.

The newsletter takes on a rigour of its own with
Reebhu’s piece on Differential forms, which itself
is a continuation of his article on Tensors from
last year. At this point it will be beneficial to add a
confessory note from my side acknowledging that
my editorial prerogative ended at ensuring literary
accessibility of Reebhu’s article, and that I was as
much a novice at Differential forms as any recent
physics graduate might be.

Finally, we have an attractive jacket and
accompanying illustrations from Parimal, another
alumnus, who chose neither the research path

nor the industry-finance vortex after graduating.
We attribute, not inaccurately, the majority of
perusals that our magazines and newsletters attract
to Parimal’s own style of intuitive and refreshing
designs.

I hope you find something worth keeping from this
edition.

-Toshi Parmar



Powai
Perspectives
on Physics

- Prof. K. G. Suresh

A Message from the HoD on
Dept. of Physics’ Celebration
of the Diamond Jubilee

Prof. K. G. Suresh has been
the Head of the Department of
Physics since November 2017.

As part of the diamond jubilee celebrations of IIT
Bombay, the department of Physics organized a 2-day
research conclave titled “Powai Perspectives on Physics”
during October 12 and 13, 2018. Leading researchers,
comprising of some of our alumni, gave lectures on
various topics ranging from topological materials to
gravitational waves to memory and plasticity. Eminent
scientists from a few institutes across the country also
gave lectures. Selected PhD students from the department
also gave talks on different topics. It was attended by

a large number of students at all levels, cutting across
departments of IITB as well as from colleges/institutes in
Mumbai.

The event gave an opportunity for an interaction between
the existing faculty, retired faculty and alumni. All the
participants stressed on the need and utility of establishing
long term research collaborations with the department.




Physics
@ IITB

Through
the Ages

- Arkya Chatterjee

O

Arkya Chatterjee is from the
graduated batch of 2019, and is
currently experiencing the debilitating
realities of adulthood such as finding
a plumber in Boston. He is the ex-
DAMP head for Physics department,
an avid listener of rock, and for the
rest you can just head up to his CV.

1. http://www.hss.iitb.ac.in/en/history-department

2. http://www.iitb.ac.in/en/about-iit-bombay/

institute-history
3. https://powai.info/2010/04/02/history-of-iit-

bombay-video/
4, http://www.phv.iitb.ac.in/en/about-us/history

IIT Bombay was established in 1958, as the
second IIT in the country after Kharagpur,

with five engineering departments, two science
departments and a department of languages'.
The institute was set up in cooperation with
UNESCO, and with substantial infrastructural
assistance and expert services from the

erstwhile USSR during the first couple of
decades®. Physics was, in fact, one of the first
departments that the institute started off
with. In the first year of operation, IIT Bombay
admitted around 100 students from an applicant
pool of approximately 3400°. Today, 60 years
later, the institute admits a little more than 1000
students in undergraduate (UG) programs via the
nation-wide JEE examinations that attract nearly
1.2 million candidates. Over the years, as the
student intake increased, the academic programs
of the department went through a number of
revisions and amendments under the guidance of
its many able-minded leaders. Alongside those
changes the research outlook and focus have
also seen a continuous but highly exploratory
trajectory. We aim to uncover a bit of that history
in this Diamond Jubilee edition article.

The Physics department started off offering
courses in Chemical Physics. Later on, a (post-
BSc) MSc Physics degree was started. This was
followed by a brief period from 1972-1983, in
which a 5-year integrated MSc degree in Physics
was offered. With the switch from the S-year
BTech program to a 4-year one, the appeal
for the integrated MSc program diminished,
leading to its termination in 1983. The
termination of the integrated MSc program
paved the way for the 4-year Engineering
Physics which continues to this day*. In its
first few batches, the number of students was
typically a single-digit figure.



Over the years, the program strength has more
than quadrupled to its current strength of 44.5
Almost an equal number of students are admitted
into the 2-year MSc program. Ever since the
early 2000s, the Physics department also has had
an active PhD program with around 150 research
scholars.

What is history but a survivors’ tale? We
uncover the intractable timeline of the
department’s history through the accounts of
the department’s own people.

Prof. S.H. Patil is one of the seniormost faculty
still associated with the department of Physics.
Currently an emeritus professor, he still visits
his office almost every single day and jokes
around with students whenever he sees them!

In one such informal session, we found out that
he joined the department around 1968 and was
a professor here until his retirement in 2010. He
recounts how, in the good ol’ days, all the faculty
members took a general interest in each other’s
work, so much so that whenever someone
published a paper, there would be a general
interest in discussing the work among the
faculty. Over the years, he feels that the number
of sub-disciplines of research have spread out
quite a bit, leading to a decrease in this kind of
interaction among the various faculty members.

The diversification of the department’s research
thrust didn’t happen easily though. First, up
until the late nineties, [IT Bombay used to be
more of a teaching institute than a research
one. This was the main reason why the PhD
program was rather “perfunctory”, as one of
the senior professors describes. Moreover, the
faculty in the Physics department were majorly
involved in theoretical work, with only a few

5. http://www.iitb.ac.in/newacadhome/

experimental groups. During the nineties, a
particularly dry period in terms of funding,

a number of new faculty started the culture
of funding their research through grants.
These majorly included experimentalists such
as Profs. P. Das, T. Kundu, B.P. Singh, R. Varma
among others. Their efforts led to the start of

a culture of independent research funding.

Since then, funding for experimentalists have
increased significantly. In lockstep with funding,
the number of experimental researchers has
gone up. In stark contrast with the early years
of the department, the ratio of experimentalists
to theorists among the current faculty is almost
exactly 1:1.

Prof. Urjit Yajnik (class of ‘80) jokingly claims
to belong to “the rare species” of integrated
MSc students of the Physics department. He
joined his alma mater as a professor in 1989
and has been associated with it ever since. He
was quite popular as Dean of Student Affairs
(DoSA) during 2011-15 and continues to be a
favourite among students. His long association
with the department meant that he would be

a goldmine of information. We interviewed
him and definitely weren’t disappointed!

Prof. Yajnik’s early years as a professor in the
nineties were marked by a general lack of any
major central funding since the government
had decided that IITs should be independent in
funding their research. At the same time, the
number of PhD students (not just in Physics but
across all departments) also dwindled due to
disproportionately low stipends in IIT Bombay
as opposed to other top institutes in the country.
In the 2000s, however, “possibly due to the Y2K
bug” quips Prof. Yajnik, the number of research
scholars started rising, and both the quality and
quantity of student intake in the PhD program
improved significantly.

6. http://www.phy.iitb.ac.in/en/faculty




Prof. Avinash Mahajan (class of ‘86),
belonging to the very first batch of EP students
, recalls taking electronics courses alongside
Electrical Engineering students since the
electronics teaching labs were not well
developed yet. Moreover, the course structure
in the early years was quite rigid with very
few electives, and no option of doing a minor,
and so on. He recalls a significant increase
in the freedom to take up electives post the
Biswas committee revision in the mid 2000s.
He was able to shed some light on the way the
department’s research program is planned. The
Department Policy Committee, in consultation
with the faculty body, identifies certain thrust
areas in which faculty hiring is concentrated.
This body has been instrumental in guiding
the department’s research over all these years.
Especially in the 2000s, when biophysics and
nonequilibrium statistical mechanics were
becoming prominent, the department started
making a number of hires in this area, leading
to the formation of the current biophysics and
soft matter group. However, beyond faculty
hirings in specific areas, the department doesn’t
really get involved in drafting plans for existing
faculty, who are given more or less a free rein
on whatever they wish to work on. Still, there
are government incentives for certain research
areas that have changed with time, e.g. the
mission mode projects on laser systems in the
80s and 90s’ and the current thrust in quantum
computing®.

Coming to pedagogy and faculty-student
interaction, almost all of the professors we
spoke with - most of them have been students
in the department once - agreed that the core
interaction and teaching methodology has
not changed too much. The primary reason

7. https://www.iitk.ac.in/new/data/History-of-R-D-2 April2009.pdf
8. https://thewire.in/the-sciences/govt-promises-shot-in-the-arm-for-
quantum-tech-research-in-india

behind this is that, since Physics batches (both
BTech and MSc) are relatively small, classic
blackboard teaching is still preserved in almost
all courses. This gives students the chance to
engage in discussions more effectively. We
spoke with Prof. Archana Pai who completed
her MSc degree in Physics in our department
in 1996. Having spent her early career years as
a professor at IISER Trivandrum, she joined
her alma mater in 2017. Being one of the most
friendly professors in the department, she was
able to give us the heartening feedback that
students seem to be much more cooperative
now than they used to be. She notes, however,
that back in her day, all core courses used to
take place in classrooms located inside the
department which meant they could see the
teachers around almost all day. Nowadays, since
classes mostly take place in the Lecture Hall
Complex, the chance to interact with professors
has gone down. But she does admit that the
DAMP team’s efforts have helped in bridging
the communication gap to some extent.

Somewhat in sync with the Diamond Jubilee,
in the past couple of years we saw a number
of alumni coming back to the department as
professors. In most reputed universities around
the world, this is seen as a sign of the growing
reputation of research culture and academic
community. Of course, our institute and our
department have always enjoyed a position of
prestige in academic circles both in India and

in the world at large. With the Diamond Jubilee
celebrations coming to a close, we students hope
that this upward sloping trajectory doesn’t face a
point of inflection.
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Engineer?

Physicist?

err...

Engineering Physicist?

- Kumar Ayush and Sandesh Kalantre

Ayush is a financial analyst at Goldman Sachs,
Bengaluru. Sandesh is a graduate research assistant
in condensed matter physics at the University of
Maryland, College Park. They both received their
undergraduate degree in Engineering Physics (class
of 2018) at IIT Bombay. This article is a personal
memoir of their beloved department, their life as EP
students and everything around it.

Engineer? Physicist? Err... Engineering
Physicist? In hindsight, it would be an
understatement to say that the past four
years have been more about discovering
ourselves than anything else. Given the
humdrum reality of scientifically inclined
teenagers in India, it was no wonder, we
both ended up being at an engineering
institution, for us, that being our beloved
‘insti’, [IT Bombay. Nevertheless, it was
the Engineering Physics program that got
us the best of both worlds, the security
of much sought after a degree from an
IIT and a way to satiate our curiosity in
physics and mathematics.

We were both attracted to this strangely
sounding programme at [IT Bombay
because of our love for physics and
mathematics from high school. For
Ayush, it was “partly because Prof.
Varun Bhalerao said it’d be a good idea,
partly because there was some family
pressure to join an IIT rather than IISc
which was my next best option, and
partly because Sandesh too chose IITB”.
It’s probably incorrect to listen to
others or do as your friends are doing,
but if you’ve chosen the people and the
friends well, it’s not as bad as many
make it sound.

Education in physics is a strange thing
to define. It’s challenging to draw
borders in what constitutes physics

and what does not. The study of stars,
galaxies and black holes does belong

to the realm of physics, but so does
getting an operational amplifier to work
in a lab. Statistical physics of gases is
used to analyze the workings of earthly
things like metals or superconductors



to astronomical objects like white dwarfs. But
more crucially so, the same ideas show up in the
study of financial markets. The brilliant platter
of physics courses at IITB got to us the nitty
gritty details of all the above ideas. But more so,
it was the wisdom about the interconnections of
science and an appreciation of all things, physics
or not, that we learned during our stay here stays
with us today.

Receiving education as an undergraduate is
never a solitary activity. IITB is no exception.
The general idea was that [ITB would offer a
better and varied peer which is important for
undergraduate education. We were not just
joining to learn Physics. We were joining to
learn how to live a life. And the variety along
with the intensity of experiences matters a lot
for the latter. Did we know all of this going in,
or did it come with four years of retrospect? Or
something in between like for Ayush - “I don’t
know, I have a bad memory but if [ were to
guess [’d say yes I did know this going in”.

Coming from Pune and Jodhpur to Mumbai
meant we were going to away from a

homely environment. Though we were no
longer at home, a new home itself came

to us as we progressed through the years,

the department. We recall a department
introduction session for freshmen, which
involved professors giving short descriptions

of their work. We started with the senior most
professors first, and as we progressed through
the introductions, a happy coincidence occurred.
The younger professors were, in fact, students
of the older ones. After three or so such
generations, came the youngest freshmen in

the room, the actual students. The department
constituted of a significant fraction of such
alumni professors, which made being associated
with the place quite rewarding. They had a
sense of gratitude towards it and an anchor to

their past when they were students. That’s what
made them so relatable to us and vice versa. A
multitude of interactions with them made us into
members of a very ‘homely’ tradition, which we
hope to keep up where we go.

Categorizing the physics department as a home
is incomplete without talking about the computer
lab and the department library. These two places
have been fortuitously available for use to all
department students during recent years. Open
24x7, they often vacillated between the hustle
and bustle of a noisy cafe to a place of necessary
solitude for academic work. Well, what makes
a college a good college is its collegiality. We
spent many weekend mornings there, over
coffee and an assorted set of crazy ideas about
physics or everything else. Ayush spent many
sleepless nights doing hackathons, completing
reports and so on. The library also doubled up as
a visitor office which meant we could meet other
students and professors. These rooms brought
people and ideas together and they continue to
do so today.

At the end of our stay here, we diverged onto
two different paths - as a financial analyst and
as a graduate student in physics. For Ayush, he
“never understood why people call my job as
the ‘non-core’ sector. Broadly speaking, EP has
partly applied math and experimental physics.
Sure, I don’t use the latter in my job, but I use or
see a use for most of the other skills that I learnt
in the former. The interesting part of studying
nature was the intellectual process. In physics,
the fight is against the rules of nature, while in
finance it is against the rules of humans. It is
this challenge that excites me to work, every
day.” As for Sandesh, “it was the same love for
physics that brought me at IITB takes me to

the lab almost every day as a graduate student.
In our respective jobs, we still do the same
thing we were taught so well at IITB, we make



models and solve problems - either on exotic
superconductors or the financial market is a
matter of taste and details.”

As we look forward to our jobs for tomorrow
- either measure a sample at ultra-low
temperatures or use the Black-Scholes pricing

model, all of it would be impossible without our

education as an Engineer and as a Physicist and
as much more during our stay here. Hindsight
is always 20/20, and getting an EP degree was
the best thing to do. If we could rewind 4 years
and could choose a different route, would we?
Absolutely for one, and even perhaps do it once
more so.

Viraj Karambelkar is from the graduated batch of 2019, and he's the ex-SAPD GSec for the department.
An avid astro-enthusiast turned graduate astrophysics student, Viraj has a passion for plays - whether it be

acting in one, or writing it. Viraj also boasts of a marvelous lung capacity, and he's utilised it to be a flautist.

Two years ago, at the end of my sophomore year,
I was hanging out with a friend in Mumbai. He
casually asked me “What work would you like
to do after graduation?”. My standard response
to this was “Not yet decided, but some research
in quantum computing or astrophysics would

be pretty cool”. I asked him the same question
expecting a similar answer, but he said “I want
to do a PhD on gauge asymmetries in type p
bosons.” More than half of his words were out of
my vocabulary, which did not surprise me as my
general knowledge of particle physics is not very
profound. What surprised me was the specificity
of his answer. The disparity in both our answers
made me a bit insecure, as it made me wonder

whether I too needed to have such a clear idea
about my future. Thankfully, none of my friends
from IIT had such specific plans, which put me at
ease.

However, this did leave me thinking : what is
better - to have a clear idea of what niche you
wanted to work in at an early stage in your
academic life, or delay this decision as much as
possible? It made me reflect on my motivation to
pursue research. In school, I always wanted to do
something related to astronomy. This was what
drove me to choose engineering physics, as it
could possibly lead to an entry in astrophysics. At
IIT, however, there was not much that a largely



ignorant first year student could do in terms of
research in astronomy, or for that matter, research
in any field. In this situation, I jumped at the first
chance of doing a research project in any field. I
had the chance to attend a workshop conducted
by NIUS to inculcate first year undergrads into
research. This workshop had a series of lectures
on different fields in physics such as particle
physics, astrophysics, experimental physics and
quantum computing. At the end of the series,
the speakers offered research projects to the
attendees, and students were selected on the
basis of a test. At the beginning, I had made

up my mind to try for an astrophysics research
project. But I was blown away by the lecture

on quantum computing. This speaker intrigued
me by demonstrating how simple principles of
quantum mechanics coupled elegantly with linear
algebra could be used to formalise complex
processes such as teleportation. Consequently, I
tried hard on the test and got accepted to work
on a research project in quantum computation at
IISER Kolkata. As my first research experience,
I worked on trying to quantify some theoretical
aspects of quantum entanglement. I stayed

in IISER Kolkata for three weeks, and I

had made up my mind to study quantum
information for the rest of my life. I continued
to work on this project for some time in my
fourth semester, but the pace of work gradually
slowed down as coursework increased and my
advisor too became busier. Eventually, I stopped
working , but still planned to renew this project
in vacations.

At this time, as part of an electronics lab project,
Prof. Sarin encouraged us to talk to a new
professor who had joined the department and was
an IITB electrical engineering alumnus. With

my project partner, | met with Prof. Bhalerao to
discuss possible FPGA projects. And I found out
that he actually worked in astronomy! I found
the kind of work he described fascinating, and

a welcome opportunity to rekindle my interest

in astronomy. I started working on a long-term
astronomy project with him, which led to an
amazing summer research internship. I started
working in this field through an accident, I have
now decided to pursue research in astronomy!

So what do students from other institutes think
about exploring? I got to spend a summer abroad,
where I met many undergraduate students from
different countries. What struck me was the
variety of things that these students did.

One student from Singapore was an Economics
major, who was doing research in Astronomy
and had already published a paper. He planned

to go back and pursue his interest in Economics.
A student majoring in computer science had
summer plans to teach English in China. An
astronomy workshop had attendees from a
diverse background of majors, all the way from
Philosophy to Computer Science. Granted that
the education systems differ from place to place,
a considerable fraction of students that I came
across in my short stay seemed willing to explore
very diverse avenues in their undergraduate years.

So which is the right way? Explore a topic in full
depth or explore a wide range of topics during
undergrad? Of course the answer is subjective.

I know friends who have done both - someone
who stuck to a topic and studied it in great depth,
and someone who has explored diverse topics
like biology, astronomy and electronics in 4
years, and they are all doing perfectly fine in
their careers. I am in no position to justify one
option over the other. Had I not walked into a
professor’s office some years ago, I would still
be doing quantum computation with equal
passion. At the end of the day, you have to figure
out what works best for you. However, if you are
amongst those who haven’t figured out what to
do yet and are looking to explore, I can assure
you that there are loads of students worldwide
who do the same. So do not be discouraged from
exploring as much as you can.

Undergrad happens only once.



Differential Forms:

Beyond Tensors

- Reebhu Bhattacharya

Reebhu Bhattacharya is from the graduated batch of 2019. A recipient of the highly elusive Integrated
Masters degree in Mathematics, Reebhu started his journey as an undergrad in the Physics department.

In the previous edition of the newsletter, we had
covered the basic mathematical definition of tensors
and the tensor product. In this article, we go one
step ahead and deal with differential forms and tensor
fields. As a small reward for our efforts, we will see
how this helps us state the Maxwell equations in an
elegant form.

Recall, from the previous article, the tensor prod-
uct of two vector spaces V and W was defined to
be a quotient of the free vector space on V x W.
For the purpose of this article, we can more sim-
ply think of the tensor product V@ W as the vec-
tor space spanned by linearly independent elements
{vi®ow; :1<i<n,1<j<m} where {v;}]"; and
{w;}7, are chosen fixed bases of V and W respec-
tively.

Recall also, that for a vector space V, V* denotes
its dual vector space. The tensors of rank (r,s) on V
form a vector space 7. (V), which can be identified
with T7(V) @ T*(V*) = V& @ (V*)®s,

1 Symmetric and Alternating
Tensors

Let o € TH(V*) = V*®F be a covariant k-tensor over
V. We can equivalently view « as a multilinear map
Vx:+-xV = R, namely if a = a1 ® --- ® ag
for a; € V*, then for v; € V, a(vy,---,v,) =
a1(vy) -+~ ag(vg). Let & denote the group of per-
mutations of k symbols, the k-th symmetric group.

Note that & acts on V* by o(vi,---,0%) =
(Vo=1(1), "+ s Vo—1(ky), fOr 0 € Gp. Also, &y acts on
the space of covariant k-tensors by

Ua(vla t 7vk) = a(va(l)a t 7,Ua'(k))
=a(o (v1,- -+, )
Note that for 7,0 € &, ™a = 7( a). Also
observe, “a(o.(vy, - ,vk)) = a(vy, -, V).
We say that o € T*(V*) is symmetric if “a = «
for any o € &y, or in other words, a(vi, -+ ,vx) =
a(Vg(1y; " Vo)) for any o € &y. One can easily

check that the set of symmetric covariant k-tensors
forms a vector subspace of T%(V*), which we denote
by $F(V*).

We define a projection Sym : TH(V*) — Sk(V*)
by
1 ag
Sym a = A Z Q
ceSy

or, more explicitly,

1
(Sym a)(en, o) = = 3 g,
" oEG,

) va’(k))

for o € T*(V*). It is a linear map and is called the
symmetrisation operator. It is easy to verify that
Sym («) is indeed symmetric and that Sym (a) = «
if and only if « is symmetric.

The tensor product of a symmetric k-tensor and a
symmetric [-tensor need not be a symmetric £ + I-
tensor. To rectify this, we introduce a new product
called symmetric product. Let o € X*(V*) and 3 €
YH(V*). We define the symmetric product of o and
B, denoted « - 8 by

a-B:=Sym (a® B) € ZF(V*)

Then, defining X(V*) = @, Z*(V*), we see that
¥(V*) is an associative unital commutative algebra
over R. Identifying V with V** and defining (V) =
Y((V*)*) as above, we obtain the algebra ¥(V) which
is called the symmetric algebra on V. Fixing a basis,
{v;}j=] of V, one can check that ¥(V) is isomor-
phic to the polynomial algebra in n variables, that is,
(V) Z Ry, -+, v,

We now provide a direct and more abstract con-
struction of the symmetric algebra on V. Consider
the tensor algebra on V, T'(V). Let Iy denote the
ideal generated by elements of the form x®@y—y®x for
x,y € V(this just means take the subspace spanned
by all elements of the form (@RrRYRL—aQRYRrR )
where a, 5 € T(V) and z,y € V). We can form the
quotient T(V)/Is, = S(V). We denote the image of
the tensor a € T(V) in (V) by [a]. Note that the
tensor product induces a product on this quotient,
and this product is commutative unlike the tensor
product. We, by abuse of terminology, also call this
the symmetric product and the product of & = [q]
and 8 =[] in ©(V) is given by & - 8 = [a ® A].



We have an explicit isomorphism between (V)
and X(V). Consider the map Sym : V — 3(V), it
is an algebra homomorphism, that is Sym (o ® §) =
Sym (a) - Sym (3). Its kernel contains Iy, so it in-
duces an algebra homomorphism,

¢ S(V)=V/Iy = $(V)

It is obviously surjective, one can also check that it
is injective so that ¢ is in fact an isomorphism.

The signed analogue of the above gives us alter-
nating tensors. We say that o € T*(V*) is alter-
nating if a = (sgn o)a for any o € & where
sgn ¢ denotes the sign of the permuation . In
other words, « is alternating if a(vy(1y, -, Vo)) =
(sgn o)a(vy, - -+ ,vg) for any o € &. Once again, the
set of alternating (covariant) k-tensors forms a vector
subspace of T%(V*), which we denote by /\k(V*)

We have a projection, Alt : TF(V*) — A"(V*)
given by

Alb (8) = 2 3" (sen 0) °5

" oEG,

or equivalently,

(Alt B)(un, - 0) = 17 3 (580 )8y, )

ceES

Note Alt g = § if and only if 5 is alternating.
Similar to the symmetric case, the tensor product
of two alternating tensors need not be alternating.

We instead introduce a new product called the alter-
nating product.

For w € N*(V*) and n € A'(V*), define their al-
ternating product to be

(k+1)!

WA=

Alt (w®n)

It is also called the wedge product. The numerical
prefactor in the above is kept in order to allow sim-
plifications for other expressions involving the wedge
product.

We will deal exclusively with alternating tensors in
a later section.

2 Some Differential Geometry

We will deal here exclusively with subsets(or more
precisely,open submanifolds) of R™. We do not as-
sume familiarity with theory of manifolds or differ-
ential geometry, although the experienced reader will
find it easy to generalize the results to manifolds(with
boundary).

Let U C R™ be open. We associate to each point
p € U, a vector space, which we call the tangent space
of U at p, denoted T),U. Geometrically, T,,U is the set
of all ”directions” at p, tangent to U, which we make
precise as follows: let v : (—&,¢) — U be any smooth
path for some ¢ > 0 with y(0) = p, then we can as-
sociate to this curve the direction 4/(0) € R™. We
define T},U to be the equivalence class of such paths,
[7], under the relation 1 ~ o if v{(0) = 75(0). Es-
sentially any such equivalence class [y] represents the
associated tangent direction 7/(0). Observe, for any
v € R™, since U is open, there exists some € > 0 such
that v, : (—¢,e) = U, 7 (t) = p + tv is well defined.
Hence, [7,] corresponds to the direction v/ (0) = v.
In fact the map v — 7y, gives a bijection between R™
and T,,U. Hence, T),U inherits the structure of a vec-
tor space under this bijection, such that it is linearly
isomorphic to R”.

An alternative way to think of the tangent space
is in terms of directional derivatives. We think of a
tangent vector as a functional, acting on a (smooth)
function to give the directional derivative in the direc-
tion of the tangent vector. The mathematical term
for this is a derivation.

Let C*°(U) denote the (vector) space of all smooth
functions f : U — R and Cp°(U) the set of all smooth
functions f : V — R where V C U is an open subset
containing p. The tangent space 1},U can be defined
to be the set of all derivations D : Cp°(U) — R, that
is,

e D islinear, D(af 4 bg) = aD(f) + bD(g) for all
f,9€CPU) and a,b € R.

e D satisfies the Leibnitz rule, D(fg) =
f()D(g) +g(p)D(f) for all f,g € CF=(U).

One can check that the partial derivatives
{521y, 522 lps -+ » 5o |p} are derivations and in fact
form a basis for T),U as per the above definition of the
tangent space. Explicitly, % p acts on f € Cx(U)

by

9 _of
ailo(/) = 52(9)

This is simply the directional derivative of f in the
direction of the i-th standard basis vector. More gen-
erally, any vector v € T, U can be written as

- 0
v=">) vzl
i=1
acting on f € Cp°(U) as the directional derivative

o(f) = (V) (v, s om)) = Vo f

We can piece together the tangent spaces at all
points of U to form the tangent bundle TU, defined
as

TU = [[{p} x T,U
pEU



In general, the tangent bundle of a manifold is again
a manifold, or more technically, a vector bundle, but
in our simplified case, we can see TU = U x R™.
An element of the tangent bundle is usually denoted
as (p,v) where p € U, and v € T,U. We have a
canonical projection 7 : TU — U, given by 7(p,v) =
p which gives the “source” of the tangent vector.

A (smooth) vector field on U is a smooth section of
the tangent bundle, that is, a smooth map X : U —
TU such that mo X (p) = p for all p € U. In simple
words, a vector field X on U is just an assignment
to each point p, a vector X(p) € T,,U in the tangent
space of that point in a smooth manner. We often
just write X, for the value of the vector field at p. In
terms of the standard basis of partial derivatives, we
can write

Xp = E v'(p) oL |p
i=1

where v* : U — R are now smooth functions for 1 <
1 <n.

The cotangent bundle is defined to be the dual of
the tangent bundle. We associate to each point p €
U, the dual of the tangent space (T,U)*, and then
patch them up together to get

U = [[{p} x (1,U)"
pEU

The basis for (7,,U)* dual to the standard basis of
partial derivatives for T,,U is denoted by dx;, that is
dxl(% p) = 0.

Let V. C R™ be open. Given a smooth function
F:U =V, we define a map dF, : T,U — Tp@ (V)
by the following two equivalent ways(depending on
how we view the tangent space):

e Given a vector v € T,U that is the veloc-
ity vector of a curve v : (—¢,6) — U, define
dF,(v) = [F 07] = (F 07)'(0).

e Considering v € T,U as a derivation, define
dF,(v) to be the derivation whose action on

g € Oy (V) is given by dFp(v)(g) = v(g o F).

Stitching together the maps for all p € U, we get
the tangent map dF : TU — TV. It is called the
differential of F'. This is a linear map and is in fact
the total derivative of F'. This is seen easily using
the second definiton as follows: if F = (F*!,---  F™)
and v = Y7, v 5% |, then for g € C3,)(V), with

coordinates ¢/ on V,

n

dF,(v)(g) =v(go F) =) v

i=1

— i~ OF(p) dy(F
:Zvlz (P) ggygp))

=[x L O0F(p) 0
- Zv Oz @‘f(p)g

j=1 \i=1

;090 F

o (p)

so that the matrix of dF}, in the standard basis of
partial derivatives is simply the Jacobian of F' at p.

In the special case, where f : U — R, df, : T,U —
Ti»R = R can be identified as an element of the
cotangent space (1,U)*, with df,(v) := v(f) for v €
T,U. In the standard dual basis,

df, = gi{?) da
i=1

3 Differential Forms

Recall that for a vector space V, we have defined the
space of alternating covariant k-tensors, /\k(V*) We
examine these in more detail.

We first describe some notation. Given a positive
integer k, a k-tuple of positive integers (i1, - ,ix) is
called a multi-index of length k. For o € &k, denote
by IU the multi-index (ig(l), e ,ig(k)).

Let V be a n-dimensional vector space as usual,
and let €',---,&™ be a basis for the dual space V*.
For a multi-index I = (i1,--- ,ix). denote by ! the
covariant k-tensor defined by

e (v1)
, V) = det

6““@)

e (vg)
el (v, -+ :

6“‘(‘1%)

Note that e’ is alternating, so el € /\k(Vk) In
fact one can check that e/ =&t A .. A glv,
For multi-indices I and J of length k, let
ot 5
n " if J =1,

6L = det
else

_ { (e

i i
6j1 6jk

Now, suppose that {e'} is the dual basis to
a basis {E;} for V.  Then, from the above,
6I(E]’n e 7Ejk) = 6{7 where J = (jla T :]k)

A multi-index I = (iy,- -+ , i) is said to be increas-
ing if iy < --- <. A basis for \"(V*) is given by

{e! : I is an increasing multi-index of length k}

Hence, dim \"(V*) = (). Note that there are
no alternating tensors of rank greater than n =
dim V because for an alternating tensor o € /\k(V*),
a(vy, -+ ,vr) = 0 if the vectors vy,--- , v, are lin-



early dependent, and any set of n + 1 vectors is lin-
early dependent in V. This follows from the fact that
because of its alternating nature, the tensor changes
sign whenever two arguments are switched, so if the
arguments are equal it evaluates to zero.

In particular, the space A\"(V*) is one dimensional
and spanned by e Ae? A---Ae™. Its action on vectors
is given by the determinant function. Hence, it is
often called the volume form or orientation form.

We now list some properties of the wedge product
which can be verified by straightforward calculations:

e (WAN)AE = wA(nAE) for any alternating tensors
w,n,&. In other words, the wedge product is
associative.

e The wedge product is not commutative but
skew-commutative(or graded commutative),

that is, for w € A"(V*) and n € A'(V*), we
have
wAn=(=1)*nAw
e The wedge product is bilinear, that is
(aw +bE) A =alwAn) +blwAE)

for alternating tensors w, &, n and a,b € R.

e For multi-indices I = (iy,---,ix) and J =
G- od), el Anel = &Y where IJ =
(ila"' 7ik7j17"' 7jl)‘

e Forw',--- ,wkFeV*and vy, -+ ,vx €V,

wh A wF (v, o) = det(w; (7))

Define the space A(V*) = @, _, A"(V*), from the
above this is a vector space of dimension 2". Under
the wedge product, it becomes an associative algebra
called the exterior algebra or Grassmann algebra of
V.

As in the case of symmetric algebra, we have an
alternate description of the alternating algebra. Let
I+ be the ideal of T(V*) generated by elements of
the form a ® o for @ € V*. In other words I, is
spanned by all those covariant tensors a1 ® - - ®@ a; ®
a;®- - -®ay, that is, simple tensors with two(or more)
factors equal. We define A(V*) := T(V*)/I;. The
tensor product descends to the quotient and forms
the alternating product, that is, if ¢ : T(V*) — A(V*)
is the quotient map, a A := q(a® ). We can check
that the map A : A(V*) — A(V*) given by

Av(Oél A ANag) = Z (sgn O')Oég(l) Q- @ Qg (k)

ceES

is an isomorphism of algebras. So, we can choose to
think of the exterior algebra in either way.

Now, we can replace V with the tangent space T,,U.
As in the case of the tangent and cotangent bun-
dle, we can put the spaces /\k(TpU *) together for all
points and define

A TU = T {p} x A¥(T,U™)
peU

As before, we have the projection 7 : A*T*U — U.
A differential k-form is a section of A¥T*U, that is,
a smooth map w : U — AFT*U satisfying 7o w(p) =
p. In other words, a differential k-form on U is an
assighment to each point p € U an alternating k-
tensor w(p) € A*(T,U*). In terms of the standard
basis {dz'} on T,U*, this involves giving a smooth
function wy : U — R for each increasing multi-index
of length k, so that we can write

o= ¥

Iy <---<ip

wrdx!

or more explicitly,

wp)= Y

T <o <ip

wI(p)dx;} A -dx;’“

We denote the vector space of smooth k-forms on
U by Q¥(U). Thus, 0-forms are just smooth functions
on U and 1-forms are covector fields. Note that for
any w € QF(U) and f € C°(U), fw = fAw € Q¥ (U).

We now define an operation on differential forms,
known as exterior differentiation. = The exterior
derivative d is a map d : Q*(U) — Q*1(U). On
0-forms, we have already encountered it, it is noth-
ing but the differential, f — df. This extends easily
to k-forms, forw = w =3, ..oy, wrdz’ € Q¥ (U)),

define
do= > (dwr)Ads’
Iy <o <ip
Explicitly,
" 8&)[ . . .
dw = Z del/\dx“/\---/\dx““

For example, for a 1-form w = " | w;da’,

dw_z(ﬁxi axj>dx A dx

1<j

It follows from the equality of mixed partial deriva-
tives that d o d = 0. Furthermore d is a linear map
satisfying the property

dwAn) =dwAn+ (=1)*w Adn

for w € Q¥(U) and n € QYU).



We say a differential form w is closed if dw = 0 and
exact if w = dn for some (k — 1)-form 7. Note that
exact forms are always closed, since d o d = 0.

We end this section by defining the Hodge dual
operator x : A*(V*) = A" (V*) where dimV = n.
It is a linear map and it is enough to define it on the
basis vectors. For e/ =gt A+ Aglk,

1
=,

' JI(jl"“ 5]71—’9)

where € denotes the Levi-Civita symbol. This is in
fact an isomorphism between alternating k-tensors
and alternating (n — k)-tensors.

4 Div, Curl, Grad and Maxwell
Equations

We specialise to the case U C R?. We know that
electric and magnetic fields are described by vector
fields on subsets of R3.

We label the co-ordinates x,y,z. A 0-form on U is
just a function f: U — R, its exterior derivative is

of of of
df = =—d —d —d
/ ox x_l_@y y+8z :
This is just the gradient of the function, V f.
Now, consider a 1-form w = wydzr + wydy + w.dz.
Its exterior derivative is

[ Owy  Owg Ow,  Owy
dw_(@x ay>d:17/\dy—|—(ay aZ>dy/\dz
Ow, Ow,
( 5 ax>dzAdx

We see that the components of dw are just the com-
ponents of the vector V x w where w = (wg, Wy, w.)
by abuse of notation. More precisely, we can identify
*(dw) with V x w since x(dx A dy) = dz and so on.

Finally, consider a 2-form n = n.dz A dy + n.dy A
dz 4+ nydz N dx. Its exterior derivative is

dn = (87795 —I—%—I—am)daz/\dy/\dz

or ox 0z

Hence, *(dn) = V -
(T, My 12)-

Thus the vector operations of gradient, curl and di-
vergence are just the exterior derivative in disguise.
This also suggests that the various theorems link-
ing these operations like the divergence theorem or
Green’s theorem are related in some manner. We do
not pursue this further here.

We are now ready to present an elegant formulation
of the Maxwell equations. For this part, we freely
borrow notation used in physics namely the Maxwell

(*n) where we write *n =

o LA AgIn—k
€iromiggroin_pE N NETT

field strength tensor F),, and hope that the reader
is acquainted with four-vector notation from special
relativity. Recall the four vector A* = (¢, A) where ¢
is the electric scalar potential and A is the magnetic

vector potential. We have F,, = 9,4, —0,A,.
0 E, E, E,
o —F, 0 -B. B,
wo\-E, B, 0 —-B,
-E. -B, B, 0

where E and B denote the electric and magnetic fields
respectively.

Define the Faraday 2-form F' = —%ijdx“ A dx”,
one can check

F =(Ezdx + Eydy + E.dz) A\ dt
+ B.dx Ndy + B,dy AN dz + Bydz A dx

From this, note xF' =
by

—1F,, * (dz" A dz”) is given

*F =—E,dy Ndz — Eydz AN dx + E.dx A\ dy
+ (Bgdx + Bydy + B.dz) AN dt

If we define G, = %EWUPF””, then it can be seen
*F = —%Gwdx“ ® dx” .
Finally define the current density 3-form J:

J = (jodyndz+j,dzAdx+j.deAdy) Adt—pdzAdyNdz
Then Maxwell’s equations can be wriiten as

dF = 0,dxF = J

5 Concluding Remarks

We have barely managed to touch the surface for
the potential applications of differential forms not
to mention the rich theory lying behind it. One of
the major results we have merely hinted at here is
the Stokes theorem, which unites various results like
Gauss’s divergence theorem, Green’s theorem etc.
under one umbrella. Undoubtedly, it is one of the
most beautiful theorems with myriad uses.

We also note that using differential forms, one can
detect “holes” in the manifold, readers are surely fa-
miliar with the differential form y’fﬁ;ﬁ on R?\ 0,
which is closed but not exact. It detects the non sim-
ple connectedness of the domain. We encourage the
reader to look at de Rham cohomology to get a better
understanding of the above vague statements.

Finally, we remark that the tangent bundle intro-
duced here is a specific example of the more general
concept of vector bundle or fibre bundle. This is an
essential concepts in areas like gauge theory. The
reader is invited to look at the theory of fiber bun-
dles in greater detail.






